Bases: BaseLlmProcessor[MapValuesIntel]
, ABC
config = 'DEFAULT'
class-attribute
instance-attribute
config_options = LlmConfigOptions()
class-attribute
instance-attribute
instructions_prompt = Prompt().text('Your job is to select a choice for the provided list of choices.').text('Make sure you select at least one choice that is the most relevant to the users input.')
class-attribute
instance-attribute
intel_class = MapValuesIntel
class-attribute
instance-attribute
__init_subclass__
Source code in dandy/llm/map/llm_map.py
| def __init_subclass__(cls):
super().__init_subclass__()
if cls.map is None:
raise MapCriticalException(f'{cls.__name__} map is not set.')
|
process
classmethod
Source code in dandy/llm/map/llm_map.py
| @classmethod
def process(
cls,
prompt: Union[Prompt, str],
choice_count: int = 1,
) -> MapValuesIntel[Any]:
return cls.process_map_to_intel(
cls.map,
prompt,
choice_count
)
|
process_map_to_intel
classmethod
Source code in dandy/llm/map/llm_map.py
| @classmethod
def process_map_to_intel(
cls,
map: Map,
prompt: Union[Prompt, str],
choice_count: int = 1
) -> MapValuesIntel[Any]:
map_values_intel = MapValuesIntel()
for map_enum in cls.process_prompt_to_intel(map, prompt, choice_count):
map_value = map.get_selected_value(map_enum.value)
if isinstance(map_value, type):
if issubclass(map_value, BaseLlmMap):
map_values_intel.extend(
map_value.process(
prompt,
choice_count
).items
)
else:
map_values_intel.append(map_value)
elif isinstance(map_value, Map):
map_values_intel.extend(
cls.process_map_to_intel(
map_value,
prompt,
choice_count
).items
)
else:
map_values_intel.append(map_value)
return map_values_intel
|
process_prompt_to_intel
classmethod
Source code in dandy/llm/map/llm_map.py
| @classmethod
def process_prompt_to_intel(
cls,
map: Map,
prompt: Union[Prompt, str],
choice_count: int = 1,
) -> MapValuesIntel:
system_prompt = (
Prompt()
.prompt(cls.instructions_prompt)
.text(f'Please select {choice_count} of the following choices by number using the following rules.')
.line_break()
.sub_heading('Rules:')
.list([
'Select the choice that best matches the users input.',
'Return at least one choice by number.'
])
.line_break()
.sub_heading('Choices:')
.text(map.keyed_choices_str())
)
return llm_configs[cls.config].generate_service(
llm_options=cls.config_options
).process_prompt_to_intel(
prompt=prompt if isinstance(prompt, Prompt) else Prompt(prompt),
intel_class=MapValuesIntel[cls.map.as_enum()],
system_prompt=system_prompt
)
|
process_to_future
classmethod
Source code in dandy/llm/map/llm_map.py
| @classmethod
def process_to_future(cls, *args, **kwargs) -> AsyncFuture[MapValuesIntel]:
return AsyncFuture[MapValuesIntel](cls.process, *args, **kwargs)
|