Workflow
Bot vs Workflow
While a Bot/LlmBot
is meant to be single step in a process, a Workflow
is meant to combine multiple steps into a single process to accomplish something more complex.
Map vs Workflow
A Map/LlmMap
is used to make decisions or navigate choices, while a Workflow
can seem similar its a container to help make more complex single processes.
Creating a Workflow
from dandy.workflow import BaseWorkflow
from dandy.llm import BaseLlmMap, Map, BaseLlmBot, Prompt, LlmConfigOptions
from dandy.intel import BaseIntel
class PlantIntel(BaseIntel):
name: str
climate: str
is_edible: bool | None = None
class ClimateLlmMap(BaseLlmMap):
config_options = LlmConfigOptions(
temperature=0.0
)
map = Map({
'very hot and rainy': 'rainforest',
'very cold and sunny': 'tundra',
'very hot and sunny': 'desert',
'very cold and rainy': 'snowfield'
})
class PlantDescriptionLlmBot(BaseLlmBot):
@classmethod
def process(cls, user_prompt: str, climate: str) -> PlantIntel:
return cls.process_prompt_to_intel(
prompt=(
Prompt()
.heading('Question')
.text(f'What plant is described in "{user_prompt}"')
.line_break()
.heading('Climate')
.text(climate)
),
intel_class=PlantIntel
)
class PlantEdibilityLlmBot(BaseLlmBot):
@classmethod
def process(cls, plant_intel: PlantIntel) -> PlantIntel:
return cls.process_prompt_to_intel(
prompt=Prompt(f'Is {plant_intel.name} edible?'),
intel_object=plant_intel,
include_fields={'is_edible'}
)
class PlantFinderWorkflow(BaseWorkflow):
@classmethod
def process(cls, user_prompt: str) -> PlantIntel:
climates = ClimateLlmMap.process(user_prompt)
plant_intel = PlantDescriptionLlmBot.process(user_prompt, climates[0])
return PlantEdibilityLlmBot.process(plant_intel)
plant_intel = PlantFinderWorkflow.process(
'I am wet from the down pour and its very warm, I see a trees with long yellow fruit bunches.')
print(plant_intel)
name='Banana' climate='rainforest' is_edible=True
Tip
Remeber you can use the @debug_recorder_to_html
on the work flow process to capture the whole process and view it in a browser for easy debugging.